Detecting and Analyzing Influenza Epidemics with Social Media in China

نویسندگان

  • Fang Zhang
  • Jun Luo
  • Chao Li
  • Xin Wang
  • Zhongying Zhao
چکیده

In recent years, social media has become important and omnipresent for social network and information sharing. Researchers and scientists have begun to mine social media data to predict varieties of social, economic, health and entertainment related real-world phenomena. In this paper, we exhibit how social media data can be used to detect and analyze real-world phenomena with several data mining techniques. Specifically, we use posts from TencentWeibo to detect influenza and analyze influenza trends. We build a support vector machine (SVM) based classifier to classify influenza posts. In addition, we use association rule mining to extract strongly associated features as additional features of posts to overcome the limitation of 140 words for posts. We also use sentimental analysis to classify the reposts without feature and uncommented reposts. The experimental results show that by combining those techniques, we can improve the precision and recall by at least ten percent. Finally, we analyze the spatial and temporal patterns for positive influenza posts and tell when and where influenza epidemic is more likely to occur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twitter Catches The Flu: Detecting Influenza Epidemics using Twitter

With the recent rise in popularity and scale of social media, a growing need exists for systems that can extract useful information from huge amounts of data. We address the issue of detecting influenza epidemics. First, the proposed system extracts influenza related tweets using Twitter API. Then, only tweets that mention actual influenza patients are extracted by the support vector machine (S...

متن کامل

Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea

BACKGROUND As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better...

متن کامل

Monitoring seasonal influenza epidemics by using internet search data with an ensemble penalized regression model

Seasonal influenza epidemics cause serious public health problems in China. Search queries-based surveillance was recently proposed to complement traditional monitoring approaches of influenza epidemics. However, developing robust techniques of search query selection and enhancing predictability for influenza epidemics remains a challenge. This study aimed to develop a novel ensemble framework ...

متن کامل

Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media

Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...

متن کامل

A Review of Influenza Surveillance System in the Islamic Republic of Iran: History, Structures and Processes

Background and Objectives: Iran, like most other countries in the world, is always threatened with global epidemics and pandemics of influenza. The purpose of this study was to review the influenza surveillance system in Iran.   Methods: Data of this study were obtained from the surveillance system of the Center for Communicable Disease Control, the review of records, documents, books and pub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014